Vehicle Stabilization via a Self-Tuning Optimal Controller

نویسندگان

  • M. Bayani
  • R. Kazemi
  • Sh. Azadiiii
چکیده مقاله:

Nowadays, using advanced vehicle control and safety systems in vehicles is growing rapidly. In this regard, in recent years new control systems, called VDC, have been introduced. These systems stabilize vehicle yaw motion, by yaw moment resulted from tire controlling forces. In this paper, an adaptive optimal controller applied to a vehicle to obtain a satisfactory lateral and yaw stability. To derive the control law, we use LQR method. Considering that various parameters are included in the controller structure, which their measurement is either expensive or practically impossible, a least squared estimator with variable forgetting factor is proposed to estimate them. To optimize the system and in order to exert the control yaw moment, an ABS brake system is implemented in a new architecture to distribute brake forces on wheels. The controller rules are derived based on the bicycle model and the estimator is designed based on the 7 DOE model of the vehicle. To simulate and evaluate the performance of the proposed controller the full vehicle model of the reference car in ADAMS/Car, with 214 DOE, is also implemented. Finally, the results of the vehicle response, equipped with the controller system, in a standard maneuver are presented.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Self-tuning Zone PID Controller for Temperature Control via a PLC code

S7-1200 with Tia Portal technology has become a Standard function of distributed controlsystems. Self-Tuning methods belong to Programmable Controllers (PLC) techniques. PLCtechniques contain software packages for advanced control based on mathematical methods. S7-1200 tools are designed to increase the Process Capacity, yield, and quality of products. Most ofthe present time digital industry r...

متن کامل

Optimal Self Tuning Neural Network Controller Design

The proposed paper deals with modeling and control of continuous-time processes using artificial neural network with orthogonal activation functions, applicable for real-time control. A genetic algorithm has been used to find the optimal neural structure for on-line identification with the best learning algorithm. A moving prediction horizon in the control algorithm found by genetic algorithm h...

متن کامل

Stabilization of chaotic systems via fuzzy time-delayed controller approac

In this paper, we investigate the stabilization of unstable periodic orbits of continuous time chaotic systems usingfuzzy time-delayed controllers. For this aim, we present a control method that can achieve stabilization of an unstableperiodic orbit (UPO) without any knowledge of the system model. Our proposal is attained progressively. First, wecombine the input-to-state linearizing controller...

متن کامل

A Self-tuning Fuzzy Robotic Force Controller

Most industrial robots are controlled as position servo-based manipulators. This has made most advanced force control algorithms unpractical and difficult to implement. In this paper a position based fuzzy PID force controller is proposed to regulate contact force of a six degree of freedom industrial robot where the environment contact stiffness varies considerably. Based on a relationship bet...

متن کامل

Self-tuning PID controller to three-axis stabilization of a satellite with unknown parameters

This paper addresses the three-axis stabilization of a satellite system in the presence of the gravity gradient and orbital eccentricity. Multivariable non-linear dynamics of the satellite system are converted into three well-known non-linear canonical independent models with unknown parameters. The new model is efficient and practical for designers to implement and analyze different control me...

متن کامل

Robust optimal multi-objective controller design for vehicle rollover prevention

Robust control design of vehicles addresses the effect of uncertainties on the vehicle’s performance. In present study, the robust optimal multi-objective controller design on a non-linear full vehicle dynamic model with 8-degrees of freedom having parameter with probabilistic uncertainty considering two simultaneous conflicting objective functions has been made to prevent the rollover. The obj...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 43  شماره 2

صفحات  33- 41

تاریخ انتشار 2011-11-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023